Coupled harmonic equations, SOR, and Chebyshev acceleration
نویسندگان
چکیده
منابع مشابه
Coupled Harmonic Equations , SOR , and Chebyshev Acceleration
A coupled pair of harmonic equations is solved by the application of Chebyshev acceleration to the Jacobi, Gauss-Seidel, and related iterative methods, where the Jacobi iteration matrix has purely imaginary (or zero) eigenvalues. Comparison is made with a block SOR method used to solve the same problem. Introduction. In [4], we proposed a general block SOR method for solving the biharmonic equa...
متن کاملModified frame algorithm and its convergence acceleration by Chebyshev method
The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...
متن کاملChebyshev acceleration of the GeneRank algorithm∗
The ranking of genes plays an important role in biomedical research. The GeneRank method of Morrison et al. [11] ranks genes based on the results of microarray experiments combined with gene expression information, for example from gene annotations. The algorithm is a variant of the well known PageRank iteration, and can be formulated as the solution of a large, sparse linear system. Here we sh...
متن کاملCHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM
In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS). This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrate...
متن کاملOn Nonhomogeneous A-Harmonic Equations and 1-Harmonic Equations
Both A-harmonic equations and p-harmonic geometry are rich subjects 1–5 . Many results on both topics have been derived, respectively, but there are very few papers relating both subjects. In this paper, we will connect these two subjects by extending several results from 1-Harmonic functions to A-Harmonic functions. We consider the following setting: a C1 function f : R → R is said to be A-har...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1972
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1972-0311128-x